Ao utilizar este site, você concorda com a Política de Privacidade e os Termos de Uso.
Aceitar

Credited

Portal de conteúdos confiáveis

  • Notícias24h
  • Finanças
  • Economia
  • Carreira
  • Negócios
  • Tecnologia
Pesquisar
  • Animais
  • Automóveis
  • Casa e Decoração
  • Ciência
  • Educação
  • Entretenimento
  • Gastronomia
  • Guia de Compras
  • Marketing Digital
  • Mensagens
  • Nomes e Apelidos
  • Relacionamentos
  • Saúde
  • Significados
  • Símbolos e Emojis
  • Telecomunicações
  • Utilidades
  • Ferramentas
  • Contato
  • Política de Privacidade
  • Termos de Uso
  • Glossários
  • Web Stories
Notificação
Redimensionador de fontesAa

Credited

Portal de conteúdos confiáveis

Redimensionador de fontesAa
  • Finanças
  • Economia
  • Carreira
  • Negócios
  • Tecnologia
Pesquisar
  • Notícias
  • Categorias
    • Finanças
    • Economia
    • Carreira
    • Negócios
    • Tecnologia
    • Marketing Digital
    • Automóveis
    • Educação
    • Casa e Decoração
    • Guia de Compras
    • Entretenimento
    • Relacionamentos
    • Saúde
    • Gastronomia
    • Animais
    • Telecomunicações
    • Significados
    • Utilidades
    • Mensagens
    • Nomes e Apelidos
    • Símbolos e Emojis
    • Web Stories
    • Glossários
  • Ferramentas
Siga-nos
PUBLICIDADE

Página Inicial > Glossários > K

K-prototypes

Escrito por Redator
Publicado 20 de março de 2025, às 05:51
Compartilhar
4 min de leitura

K-prototypes: O que é e como funciona?

K-prototypes é um algoritmo de clusterização que combina o K-means (para dados numéricos) e o K-modes (para dados categóricos). Ele é utilizado para agrupar dados que possuem tanto atributos numéricos quanto categóricos, algo comum em muitos conjuntos de dados do mundo real. Diferente do K-means, que só funciona com dados numéricos, o K-prototypes lida com ambos os tipos de dados simultaneamente, tornando-o uma ferramenta poderosa para análise de dados heterogêneos.

Como o algoritmo K-prototypes lida com dados mistos?

O K-prototypes utiliza uma função de distância que considera tanto a distância euclidiana para atributos numéricos quanto a dissimilaridade simples para atributos categóricos. A distância euclidiana mede a diferença entre os valores numéricos, enquanto a dissimilaridade simples conta o número de atributos categóricos que diferem entre dois objetos. Um parâmetro de peso (γ) é usado para equilibrar a importância relativa dos atributos numéricos e categóricos na função de distância total. Ajustar este parâmetro é crucial para obter bons resultados de clusterização.

CONTINUA APÓS A PUBLICIDADE

Etapas do algoritmo K-prototypes

  1. Inicialização: Selecionar aleatoriamente K protótipos (centróides) iniciais. Cada protótipo representa um cluster.
  2. Atribuição: Atribuir cada objeto ao cluster cujo protótipo é o mais próximo, com base na função de distância combinada.
  3. Atualização: Recalcular os protótipos para cada cluster. Para atributos numéricos, o protótipo é a média dos valores dos objetos no cluster. Para atributos categóricos, o protótipo é o modo (o valor mais frequente) dos atributos no cluster.
  4. Iteração: Repetir os passos 2 e 3 até que a atribuição dos objetos aos clusters não mude significativamente ou um número máximo de iterações seja atingido.

Aplicações do K-prototypes

O K-prototypes encontra aplicações em diversas áreas, incluindo:

  • Segmentação de clientes: Agrupar clientes com base em características demográficas (categóricas) e comportamentais (numéricas).
  • Análise de risco de crédito: Identificar grupos de clientes com diferentes perfis de risco, considerando informações financeiras (numéricas) e demográficas (categóricas).
  • Agrupamento de documentos: Organizar documentos com base em palavras-chave (categóricas) e métricas de frequência (numéricas).
  • Bioinformática: Agrupar genes com base em dados de expressão (numéricos) e características funcionais (categóricas).

Vantagens e Desvantagens do K-prototypes

Vantagens:

CONTINUA APÓS A PUBLICIDADE
  • Capacidade de lidar com dados mistos (numéricos e categóricos).
  • Simplicidade e facilidade de implementação.

Desvantagens:

RECOMENDADO PARA VOCÊ

Kapok
Kreditstrategien
Corneano
  • Sensibilidade à inicialização dos protótipos.
  • Necessidade de definir o número de clusters (K) a priori.
  • Pode ser computacionalmente caro para grandes conjuntos de dados.

Alternativas ao K-prototypes

Existem outras técnicas de clusterização que podem ser usadas para dados mistos, como:

  • Algoritmos baseados em distância Gower: Utilizam a distância de Gower, que é uma medida de dissimilaridade que pode ser aplicada a dados mistos.
  • Algoritmos hierárquicos: Permitem construir uma hierarquia de clusters, o que pode ser útil para explorar diferentes níveis de granularidade.
  • Modelos de mistura Gaussianos (GMMs) com variáveis latentes: Modelam a distribuição dos dados como uma mistura de distribuições Gaussianas, com variáveis latentes para representar os atributos categóricos.

Considerações importantes ao usar K-prototypes

Ao aplicar o K-prototypes, é importante considerar os seguintes aspectos:

  • Pré-processamento dos dados: Normalizar ou padronizar os atributos numéricos para evitar que atributos com valores maiores dominem a função de distância.
  • Escolha do número de clusters (K): Utilizar métodos como o método do cotovelo ou o coeficiente de silhueta para determinar o número ideal de clusters.
  • Ajuste do parâmetro de peso (γ): Experimentar diferentes valores de γ para encontrar o equilíbrio ideal entre a importância dos atributos numéricos e categóricos.
  • Avaliação dos resultados: Utilizar métricas de avaliação de clusterização, como o índice de Davies-Bouldin ou o índice de Calinski-Harabasz, para avaliar a qualidade dos clusters obtidos.
Compartilhe este artigo
Facebook Whatsapp Whatsapp Telegram
PUBLICIDADE

Você também pode gostar

Kerry Blue Terrier

Câncer de vulva

Kedrs (sistema de gestão de despesas)

Câncer de pênis

KVM switch

Câncer de pele linfoma cutâneo de células T associado à síndrome de Castleman

Cortical

Kombucha de Grãos

Siga-nos
2020 - 2025 © Credited - Todos os direitos reservados.
  • Contato
  • Política de Privacidade
  • Termos de Uso
  • Glossários
  • Web Stories