Ao utilizar este site, você concorda com a Política de Privacidade e os Termos de Uso.
Aceitar

Credited

Portal de conteúdos confiáveis

  • Notícias24h
  • Finanças
  • Economia
  • Carreira
  • Negócios
  • Tecnologia
Pesquisar
  • Animais
  • Automóveis
  • Casa e Decoração
  • Ciência
  • Educação
  • Entretenimento
  • Gastronomia
  • Guia de Compras
  • Marketing Digital
  • Mensagens
  • Nomes e Apelidos
  • Relacionamentos
  • Saúde
  • Significados
  • Símbolos e Emojis
  • Telecomunicações
  • Utilidades
  • Ferramentas
  • Contato
  • Política de Privacidade
  • Termos de Uso
  • Glossários
  • Web Stories
Notificação
Redimensionador de fontesAa

Credited

Portal de conteúdos confiáveis

Redimensionador de fontesAa
  • Finanças
  • Economia
  • Carreira
  • Negócios
  • Tecnologia
Pesquisar
  • Notícias
  • Categorias
    • Finanças
    • Economia
    • Carreira
    • Negócios
    • Tecnologia
    • Marketing Digital
    • Automóveis
    • Educação
    • Casa e Decoração
    • Guia de Compras
    • Entretenimento
    • Relacionamentos
    • Saúde
    • Gastronomia
    • Animais
    • Telecomunicações
    • Significados
    • Utilidades
    • Mensagens
    • Nomes e Apelidos
    • Símbolos e Emojis
    • Web Stories
    • Glossários
  • Ferramentas
Siga-nos
PUBLICIDADE

Página Inicial > Glossários > M

Multiplicação de Matrizes

Escrito por Redator
Publicado 24 de fevereiro de 2025, às 01:33
Compartilhar
3 min de leitura

O que é Multiplicação de Matrizes?

A multiplicação de matrizes é uma operação matemática fundamental que combina duas matrizes para produzir uma nova matriz. Essa operação é amplamente utilizada em diversas áreas, incluindo inteligência artificial, onde é essencial para o processamento de dados e a construção de algoritmos de aprendizado de máquina.

Como Funciona a Multiplicação de Matrizes?

Para multiplicar duas matrizes, a matriz resultante é obtida multiplicando-se as linhas da primeira matriz pelas colunas da segunda. Para que a multiplicação seja possível, o número de colunas da primeira matriz deve ser igual ao número de linhas da segunda matriz. O elemento na posição (i, j) da matriz resultante é calculado somando o produto dos elementos correspondentes da linha i da primeira matriz e da coluna j da segunda matriz.

CONTINUA APÓS A PUBLICIDADE

Propriedades da Multiplicação de Matrizes

A multiplicação de matrizes possui várias propriedades importantes, como a não comutatividade (ou seja, A × B não é necessariamente igual a B × A), a associatividade (A × (B × C) = (A × B) × C) e a distributividade (A × (B + C) = A × B + A × C). Essas propriedades são cruciais para a manipulação de matrizes em algoritmos de IA.

Aplicações da Multiplicação de Matrizes na Inteligência Artificial

Na inteligência artificial, a multiplicação de matrizes é utilizada em diversas aplicações, como redes neurais, onde os pesos das conexões entre os neurônios são representados por matrizes. Além disso, a multiplicação de matrizes é essencial em algoritmos de recomendação, processamento de imagens e na resolução de sistemas de equações lineares, que são comuns em modelos preditivos.

CONTINUA APÓS A PUBLICIDADE

Exemplo Prático de Multiplicação de Matrizes

Considere duas matrizes A e B, onde A é uma matriz 2×3 e B é uma matriz 3×2. A multiplicação resultará em uma matriz C de dimensão 2×2. Se A = [[1, 2, 3], [4, 5, 6]] e B = [[7, 8], [9, 10], [11, 12]], então a matriz C será calculada como:

RECOMENDADO PARA VOCÊ

Movimentação de Valores
Monotonia nos relacionamentos
Medida provisória
Mangueira de combustível
Métodos de Agrupamento

C[0][0] = (1*7 + 2*9 + 3*11) = 58

C[0][1] = (1*8 + 2*10 + 3*12) = 64

C[1][0] = (4*7 + 5*9 + 6*11) = 139

CONTINUA APÓS A PUBLICIDADE

C[1][1] = (4*8 + 5*10 + 6*12) = 154

Portanto, C = [[58, 64], [139, 154]].

Compartilhe este artigo
Facebook Whatsapp Whatsapp Telegram
PUBLICIDADE

Você também pode gostar

Multitasking

Manobras de Segurança

Macarrão instantâneo

Mapeamento Genético Animal

Mentoria Acadêmica

Margem de Valor Agregado

Modulação de Fluxo

Multiplicador de Despesas

Siga-nos
2020 - 2025 © Credited - Todos os direitos reservados.
  • Contato
  • Política de Privacidade
  • Termos de Uso
  • Glossários
  • Web Stories